LP-OSFPZX01DX

Transceptor SFP de fibra óptica Monomodo (9/125µm) LC duplex 1000BASE-ZX 1.25Gbps en 1550nm compatible MSA, hasta 80Km, o Multimodo 50/125 µm ó 62.5/125 µm hasta 550m con DDM.

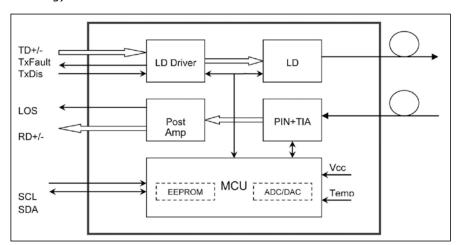
LPOSFPZX01DX SS SPB01W

Características

- Tasa de transmisión de datos de 1.25 Gbps.
- Láser DFB y Diodo PIN 1550nm para transmisión hasta 80 Km.
- Empaque SFP MSA y SFF-8472 con conector LC dúplex.
- Acoplable en caliente.
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration.
- Compatible con SONET OC-24-LR-1.
- Compatible con RoHS.
- Fuente sencilla de +3.3V.
- Temperatura de Operación del la cubierta: Estándar: 0°C a +70°C Extendida: -20 a +85°C.
- Transmisión hasta 550 m con fibra multimodo.
- Transmisión hasta 80Km con fibra monomodo.
- Baja emisión de interferencia electromagnetic (EMI) y excelente protección contra descargas de Electricidad estática (ESD).
- Cumple el estándar de seguridad laser IEC-60825.

Aplicaciones

- Ethernet Gigabit.
- Canal de Fibra.
- Interfaz Switch a Switch.
- Aplicaciones para conmutación en Back Planes.
- Sistemas de interfaz entre Enrutadores y Servidores.
- Otros sistemas de transmisión óptica.


LP-OSFPZX01DX

Transceptor SFP de fibra óptica Monomodo (9/125 μ m) LC duplex 1000 BASE-ZX 1.25Gbps en 1550 nm compatible MSA, hasta 80 Km, o Multimodo 50/125 μ m ó 62.5/125 μ m hasta 550 m con DDM

El transceptor SFP LPOSFPZX01DX soporta una tasa de transmisión doble de 1.25Gbps/1.0625Gbps y distancias de transmisión de 80 Km con fibra monomodo y hasta 550 m con fibra multimodo. El transceptor LPOSFPZX01DX posee dos secciones: La sección de transmisión incorpora un láser DFB de 1550nm y la sección del receptor un fotodiodo PIN integrado con un preamplificador de trans-impedancia (TIA).

Todos los módulos satisfacen los requerimientos de seguridad Clase I. La salida óptica puede ser deshabilitada mediante una señal de entrada denominada Tx Disable, compatible TTL de nivel alto. La señal Tx Fault, de falla de transmisión indica la degradación del láser. La señal de salida (LOS) indica la pérdida de una entrada óptica en el receptor.

La información de ID serial estándar compatible con el MSA SFP y el SFF-8472 que describe las capacidades del transceptor, su interfaz estándar, el fabricante y la información. El equipo huésped puede acceder a esta información vía el bus serial de dos conductores. Para mayor información refiérase al acuerdo MSA SFP Multi-Source Agreement (MSA). Estos módulos son compatibles con SONET OC-24-LR-1 y vienen con la funcionalidad DDM (Digital Diagnostic Monitoring) incluída.

A Especificaciones de Desempeño:

Tabla 1 - Especificaciones Máximas Absolutas

Parámetro	Símbolo	Mínimo	Máximo	Unidades
Temperatura de almacenamiento.	Tst	-40	+85	°C
Temperatura de Operación	Тор	0	+70	°C
Voltaje de alimentación	Vcc	0	+3.6	V
Voltaje de entrada	Vin	GND	Vcc	
Temperatura de soldadura y tiempo		240/10		°C/s

B Ambiente Operacional Recomendado

Tabla 2 - Condiciones recomendadas de operación

Parámetro		Símbolo	Mínimo	Típico	Máximo	Unidad	
Temperatura de Operación	Estándar	Tc	0		+70	°C	
de la caja	Extendida	IC.	-20		+85	°C	
Voltaje de alimentación	Vcc	Vcc	3.13	3.3	3.47	V	
Corriente de alimentación	Icc	Icc			300	mA	
Tasa de Transmisión	Gigabit Ethernet			1.25		Chan	
idsa de fransifision	Fiber Channel			1.063		Gbps	
Humedad Relativa de Operación		-	5		95	%	

Características Ópticas y Eléctricas

(DFB y PIN, 1550 nm, alcance 120 km) Tabla 3 - Características Ópticas y Eléctricas

Parámetro		Símbolo	Mín.	Típico	Máx.	Unid.	Notas	
	Transmisor							
Longitud de onda	central	λс	1520	1550	1580	nm		
Ancho Espectral (-20dB)	Δλ			1	nm		
Potencia promedio	de Salida	Pout	0		5	dBm	1	
Relación de Exti	Relación de Extinción		9			dB		
Tiempo de Alza y caida Óptica (20%~80%)		tr/tf			0.26	ns		
Diferencial de balanceo de	Diferencial de balanceo de la señal de data		400		1800	mV	2	
Impedancia Diferencia	l de entrada	Z _{IN}	90	100	110	Ω		
Inhahilitación de TV	Inhabilitación			2.0		Vcc	V	
Inhabilitación de TX	Habilitación			0		0.8	V	
Falla de TX	Falla			2.0		Vcc	V	
	Normal			0		0.8	V	

Receptor						
Longitud de onda Central	λс	1260		1580	nm	
Sensibilidad del Receptor				-31	dBm	3
Sobrecarga del Receptor		-9			dBm	3
LOS De-Assert	LOSD			-32	dBm	
Afirmar LOS	LOSA	-45			dBm	
Histéresis LOS		1		4	dB	
Diferencial de balanceo de la señal de Salida de data	Vout	370		1800	mV	4
LOS	High	2.0		Vcc	V	
LOS	Low			0.8	V	

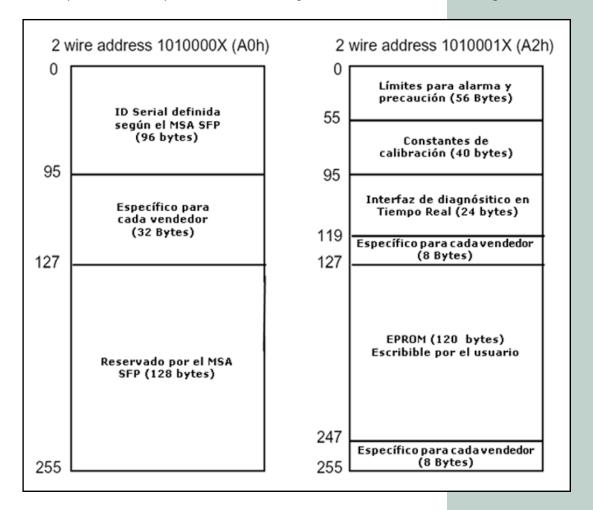
D Temporización y parámetros eléctricos

Tabla 4 - Temporización y parámetros eléctricos

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V _H	2		V _{cc}	V
MOD_DEF (0:2)-Low	V _L			0.8	V

Diagnósticos

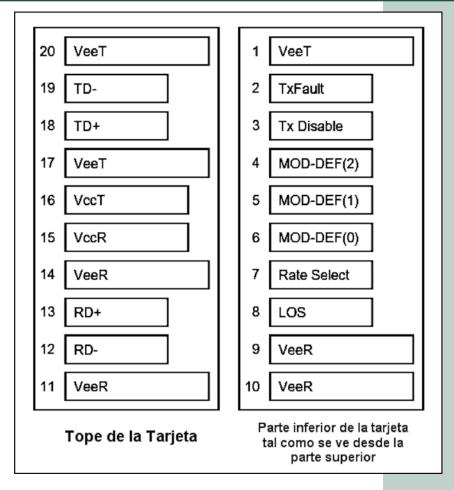
Table 5 - Especificación de Diagnósticos


Parámetro	Rango	Unidad	Precisión	Calibración	
Tomporatura	0 a +70	°C	±3°C	Internal / Evitage	
Temperatura	-20 a +85	3.0	±3°C	Interna / Externa	
Voltaje	3.0 a 3.6	V	±3%	Interna / Externa	
Corriente de polarización	0 a 100	mA	±10%	Interna / Externa	
Potencia TX	0 a +5	dBm	±3dB	Interna / Externa	
Potencia RX	-23 a -3	dBm	±3dB	Interna / Externa	

Mapa digital de Memoria de Diagnóstico

Estos transceptores proveen información de una memoria serial de contenido de ID y de diagnóstico referente a las condiciones de operación presente a través de la interfaz serial 2-wire (SCL, SDA).

Toda la información de diagnostico con la información de calibración interna y externa ha sido implantada, incluyendo el monitoreo de la potencia recibida y de la potencia de transmisión, la corriente de polarización, el monitoreo del voltaje de la fuente de voltaje y de la temperatura.


Los campos de datos específicos del mapa de memoria de diagnóstico están definidos como sigue:

G Definición de pines de conexión

Diagrama de pines

Descripción de pines de conexión:

Pines	Nombre	Descripción	NOTA
1	VeeT	Tierra del transmisor	
2	Tx Fault	Indicación de falla del transmisor, alto lógico, compatible con colector abierto , 4.7K a 10K Ohm pull-up a VDDT en el host	1
3	Tx Disable	Inhabilitación del transmisor – Inhabilitación del modulo cuando alto o abierto(no utilizado)	2
4	MOD DEF2	Definición del módulo 2, interfaz ID serial de dos alambres SDA, 4.7K a 10K Ohm pull-up a VDDT en host	
5	MOD DEF1	Definición del módulo 1, interfaz ID serial de dos alambres SCL, 4.7K a 10K Ohm pull-up a VDDT en host	
6	MOD DEF0	Definición del módulo 0 TTL bajo	
7	Rate Select	Seleccionar entre full o reducido ancho de banda indefinido	
8	LOS	Pérdida de señal en el receptor, alto lógico, Colector abierto, compatible con 4.7K a 10K Ohm pull-up a VDDT en host.	4
9	VeeR	Tierra del receptor	

Pin Descriptions

Pines	Nombre	Discripción			
10	VeeR	Tierra del receptor			
11	VeeR	Tierra del receptor			
12	RD-	Salida de data recibida invertida, PECL Diferencial, acoplada en AC	5		
13	RD+	Received Data Out, Differential PECL, acoplada en AC	5		
14	VeeR	Tierra del receptor			
15	VccR	Potencia del receptor			
16	VccT	Potencia del transmisor			
17	VeeT	Tierra del receptor			
18	TD+	Data entrando al transmisor, PECL Diferencial, acoplada en AC	6		
19	TD-	Inverse Transmitter Data In, PECL Diferencial, acoplada en AC	6		
20	VeeT	Tierra del transmisor			

Notas:

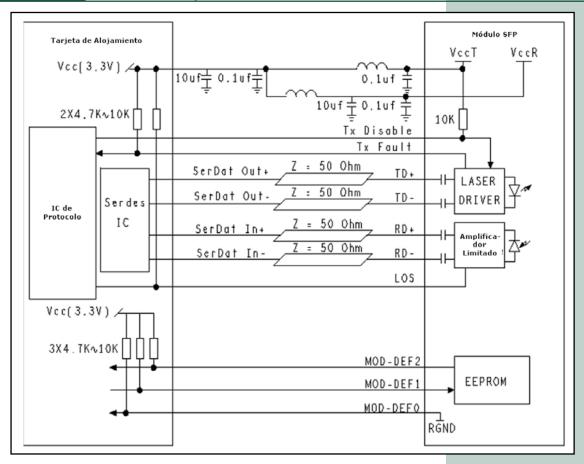
- 1. La salida TX Fault es de collector abierto, y deberá ser halada con una Resistencia de $4.7k\sim10k\Omega$ hacia un voltaje entre 2.0V a Vcc+0.3V en la tarjeta que aloja al módulo. El cero lógico 0 indica una operación normal; el 1 lógico indica falla del láser o de otra naturaleza. En el estado bajo, la salida sera halada hacia un voltaje menor de 0.8V.
- 2. TX Disable es una entrada utilizada para apagar la salida del transmisor óptico. Es halada hacia arriba con una resistencia entre $4.7k\sim10k\Omega$. Sus estados son:

Bajo $(0 \sim 0.8 \text{V})$: Transmisor encendido

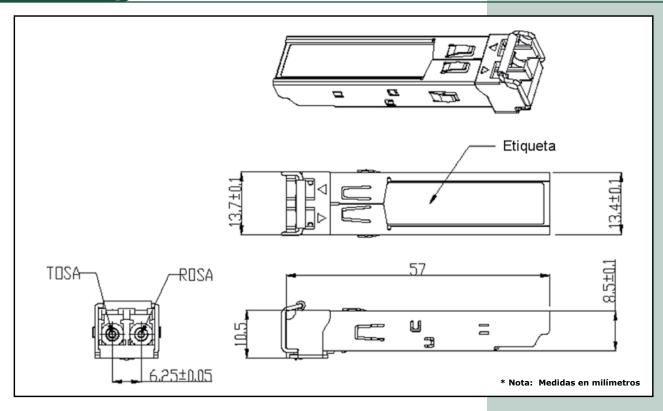
(>0.8V, <2.0V): Indefinido

Alto (2.0~3.465V): Transmisor apagado Abierto: Transmisor inhabilitado

3. MOD-DEF 0,1,2 son los pines para definición del módulo. Deberán ser halados con una Resistencia de $4.7k\sim10k\Omega$ hacia VccT or VccR en la tarjeta que lo aloja.


MOD-DEF 0 es aterrada por el modulo para indicar que está presente

MOD-DEF 1 es la línea de reloj de la interfaz serial de dos alambres de la ID MOD-DEF 2 es la línea de Data de la interfaz serial de dos alambres de la ID.


- **4.** LOS es una salida de collector abierto que deberá ser halada hacia a través de una resistencia de $4.7k\sim10k\Omega$ hacia un voltaje entre 2.0V y Vcc+0.3V en la tarjeta que lo aloja. El cero lógico indica operación normal; el 1 lógico indica pérdida de señal. En el estado bajo, la salida es halada hacia un voltaje menor a 0.8V.
- **5.** Estos constituyen la salida diferencial del receptor. Están internamente desacopladas en AC y tienen que ser terminadas en una impedancia de $100~\Omega$ diferencial en el usuario SERDES.
- **6.** Estas son entradas diferenciales, están acopladas en AC, y están terminadas en una impedancia diferencial de $100~\Omega$ dentro del módulo.

Circuito de aplicación recomendado

Dimensiones mecánicas

K Cómo Ordenar

LP-OSFPZX01D	Transceptor SFP de fibra óptica Monomodo (9/125 μm) LC duplex 1000BASE-ZX 1.25 Gbps en 1550 nm compatible MSA, hasta 80 Km, o Multimodo 50/125 μm ó 62.5/125 μm hasta 550 m con DDM y rango de temperatura estándar de: 0° a 70 °C.
LP-OSFPZX01DE	Transceptor SFP de fibra óptica Monomodo (9/125 μm) LC duplex 1000BASE-ZX 1.25 Gbps en 1550 nm compatible MSA, hasta 80 Km, o Multimodo 50/125 μm ó 62.5/125 μm hasta 550 m con DDM y rango de temperatura extendido de -20 a +85 °C.