Features

■ Supports $1.25 \mathrm{Gbps} / 1.0625$ Gbps bit rates

■ Bi-Directional LC connector

- Hot pluggable SFP footprint
- 1310 nm FP laser and 1550 nm PIN photo detector
- 1550 nm DFB laser and 1310 nm PIN photo detector
- Applicable for 20 km SMF connection

■ Low power consumption, < 0.8 W
\square Digital Diagnostic Monitor Interface

- Compliant with SFP MSA and SFF-8472
- Very low EMI and excellent ESD protection
\square Operating case temperature: Commerical: 0 to $70^{\circ} \mathrm{C}$ Industrial:-40 to $85^{\circ} \mathrm{C}$

Applications

- Gigabit Ethernet.

■ 1x Fiber Channel.
■ Switch to Switch interface.

- Switched backplane applications.
- Router/Server interface.

■ Other optical transmission systems.

LP-OSFPLX03DWA1

Transceiver SFP Singlemode (SM) 9/125 $\mu \mathrm{m}$, LC

 simplex, DDM, 1000BASE-LX, Tx 1550nm /Rx 1310nm, WDM, up to 20 km Single sideThe LP-OSFPLX03DWA1 SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of $1.25 \mathrm{Gbps} / 1.0625 \mathrm{Gbps}$ and 20km transmission distance with SMF. The transceiver consists of three sections: a FP/DFB laser transmitter, a PIN photodiode integrated with a transimpedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements. The transceivers are compatible with SFP MultiSource Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Pin Definition and Functions

Pin Descriptions

Pin	Signal Name	Functional Description	Notes
1	VeeT	Tx ground	
2	TX FAULT	Tx fault indication, Open Collector Output, active "H"	1
3	TX DISABLE	LVTTL Input, internal pull-up, Tx disabled on "H"	2
4	MOD $\operatorname{DEF}(2)$	2 wire serial interface data input/output (SDA)	3
5	MOD $\operatorname{DEF}(1)$	2 wire serial interface clock input (SCL)	3
6	MOD DEF(0)	Model present indication	3
7	Rate Select	No connection	
8	LOS	Rx loss of signal, Open Collector Output, active "H"	4
9	VeeR	Rx ground	
10	VeeR	Rx ground	
11	VeeR	Rx ground	
12	RD-	Inverse Received Data Out	5
13	RD+	Received Data Out	5
14	VeeR	Rx ground	
15	VccR	Rx power supply	
16	VccT	Tx power supply	
17	VeeT	Tx ground	
18	TD+	Transmitter Data In	6
19	TD-	Inverse Transmitter Data In	6
20	VeeT	Tx ground	

Notes:	
1	When high, this output indicates a laser fault of some kind. Low indicates normal operation. And should be pulled up with a $4.7-10 \mathrm{~K} \Omega$ resistor on the host board.
2	TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7-10 \mathrm{~K} \Omega$ resistor. Its states are: Low ($0-0.8 \mathrm{~V}$): Transmitter on ($>0.8,<2.0 \mathrm{~V}$): Undefined High (2.0V Vcc+0.3V): Transmitter Disabled Open: Transmitter Disabled
3	Mod-Def $0,1,2$. These are the module definition pins. They should be pulled up with a $4.7 \mathrm{~K}-10 \mathrm{~K} \Omega$ resistor on the host board. The pull-up voltage shall be between $2.0 \mathrm{~V} \sim \mathrm{Vcc}+0.3 \mathrm{~V}$. Mod-Def 0 has been grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID
4	When high, this output indicates loss of signal (LOS). Low indicates normal operation.
5	RD+/-: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. TheAC coupling is done inside the module and is thus not required on the host board.
6	TD+/-: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.

Absolute Maximum Ratings

Parameter	Symbol	Min	Typ	Max	Unit
Maximum Supply Voltage	Vcc	-0.5		4.0	Note
Storage Temperature	TS	-40		8	
Relative Humidity	RH	0		85	

	Parameter	Symbol	Min	Typ	Max	Unit	Note
Transmitter							
Differential data input swing		VIN,PP	120		820	mVpp	1
Tx Disable Input-High		VIH	2.0		$\mathrm{Vcc}+0.3$	V	
Tx Disable Input-Low		VIL	0		0.8	V	
Tx Fault Output-High		VOH	2.0		$\mathrm{Vcc}+0.3$	V	2
Tx Fault Output-Low		VOL	0		0.8	V	2
Input differential impedance		Rin		100		Ω	
Receiver							
Differential data output swing		Vout,pp	340	650	800	mVpp	3
Rx LOS Output-High		VROH	2.0		Vcc+0.3	V	2
Rx LOS Output-Low		VROL	0		0.8	V	2
Notes:							
1	TD+/- are internally AC coupled with 100Ω differential termination inside the module.						
2	Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7 k to $10 \mathrm{k} \Omega$ resistors on the host board. Pull up voltage between 2.0 V and $\mathrm{Vcc}+0.3 \mathrm{~V}$.						
3	RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.						

Optical Characteristics $\left(\operatorname{TOP}(\mathrm{C})=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{TOP}(\mathrm{I})=-40$ to $85^{\circ} \mathrm{C}, \mathrm{vCC}=3.13$ to 3.47 v)

Parameter	Symbol	Min	Typ	Max	Unit	Note
Transmitter						
Operating Wavelength	λ	1270	1310	1360	nm	
		1510	1550	1570		
Ave. output power (Enabled)	PAVE	-9		-3	dBm	1
Extinction Ratio	ER	9			dB	1
Side-Mode Suppression Ratio	SMSR	30			dB	
RMS spectral width 1310 nm FP	$\Delta \lambda$			3	nm	
RMS spectral width 1550nm DFB				1	nm	
Rise/Fall time (20\%~80\%)	Tr/Tf			0.26	ns	2
Dispersion penalty	TDP			3.9	dB	
Output Optical Eye	Compliant with IEEE802.3 z (class 1 aser safety)					
Receiver						
Operating Wavelength	λ	1510	1550	1570	nm	
		1270	1310	1360		
Receiver Sensitivity	PSEN1			-22	dBm	3
Overload	PAVE	-3			dBm	3
LOS Assert	Pa	-35			dBm	
LOS De-assert	Pd			-24	dBm	
LOS Hysteresis	Pd-Pa	0.5			dB	

Notes:	
1	Measured at $1250 \mathrm{Mb} / \mathrm{s}$ with PRBS $2223-1$ NRZ test pattern.
2	Unfiltered, measured with a PRBS223-1 test pattern @1.25Gbps
3	Measured at $1250 \mathrm{Mb} / \mathrm{s}$ with PRBS 223-1 NRZ test pattern for BER $<1 \times 10-12$

Transceiver SFP Singlemode (SM) 9/125 $\mu \mathrm{m}$, LC simplex, DDM, 1000BASE-LX, Tx $1550 \mathrm{~nm} / \mathrm{Rx} 1310 \mathrm{~nm}$, WDM, up to 20 km Single side.

